BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

IDAHO POWER COMPANY

DIRECT TESTIMONY

OF

JAY K. JOHNSON

- 1 Q. Please state your name and business address
- 2 for the record.
- 3 A. My name is Jay K. Johnson. My business
- 4 address is 303 Second Street, Suite 700 North, San
- 5 Francisco, California.
- 6 Q. By whom are you employed and in what
- 7 capacity?
- 8 A. I am Vice President and Area Manager for PB
- 9 Power, Inc. PB Power is a Parsons Brinckerhoff Company.
- 10 Parsons Brinkerhoff is a global engineering company with
- 11 over 250 offices and 9,200 employees. PB Power has
- 12 engineered more than 75,000 MW of power at over 300 sites
- 13 around the world.
- Q. What is your educational and professional
- 15 background?
- 16 A. I received a Bachelor of Science Degree in
- 17 Mechanical Engineering from the University of California,
- 18 Berkeley in 1971. I am a professional engineer registered
- 19 in California, Connecticut and Arizona. A more detailed
- 20 description of PB Power's experience and my professional
- 21 experience is attached to my testimony as Exhibit 101.
- Q. What is the purpose of your testimony in
- 23 this proceeding?

JOHNSON, DI 1
Idaho Power Company

- 1 A. Several months ago Idaho Power requested
- 2 that PB Power prepare a report which would provide a
- 3 current estimate of the cost of constructing and operating
- 4 a state-of-the-art 250 MW combined cycle combustion turbine
- 5 sited in the vicinity of Boise, Idaho. They indicated that
- 6 they were concerned that some of the cost assumptions
- 7 currently used to compute their published avoided cost
- 8 rates were outdated and they wanted me to provide more
- 9 recent information. Included with my prefiled testimony as
- 10 Exhibit 102 is a copy of the report PB Power submitted to
- 11 Idaho Power in June of this year. The purpose of my
- 12 testimony is to sponsor Exhibit 102 and to explain why I
- 13 believe that the cost data presented in Exhibit 102 fairly
- 14 represents the fixed and variable (excluding fuel) costs
- 15 that Idaho Power would incur if it were to construct and
- 16 operate a 250 MW, base-loaded combined cycle combustion
- 17 turbine commencing operation in 2002.
- 18 Q. Could you please describe the specific CCCT
- 19 which forms the basis for the costs contained in Exhibit
- 20 102.
- 21 A. The plant configuration is assumed to be a
- 22 combined cycle plant using a single General Electric Frame
- 7FB combustion turbine generator and a single reheat steam JOHNSON, DI 2 Idaho Power Company

- 1 turbine generator. The Frame 7FB represents GE's latest
- 2 upgrade to the 7FA, which went into production in 1994.
- 3 The plant is configured with a three pressure HRSG and
- 4 includes reheat and combustion turbine inlet air
- 5 evaporative cooling to optimize plant performance. Air
- 6 emission control equipment includes an SCR and CO catalyst
- 7 to minimize NOx and CO emissions. The plant is designed
- 8 for a northern climate with the CTG and STG indoors. An
- 9 assumption was made that natural gas compression would be
- 10 required. Two 100% capacity gas compressors are included.
- 11 Because of regional concerns for water usage, two
- 12 cooling options were considered. The first was a
- 13 conventional multiple cell mechanical draft cooling tower.
- 14 This option provides the best overall plant performance at
- 15 the lowest price. The second option considered was an air
- 16 cooled condenser. This option minimizes water usage, but
- 17 at a higher capital cost and at a reduction in overall
- 18 plant performance.
- 19 The estimated capital cost of the facility
- 20 described above is as follows:
- 21 Cooling Tower Option: \$173,500,000
- 22 Air Cooled Option: \$181,400,000
- 23 Dividing each option by the annual average net power output ${\tt JOHNSON,\,DI}$ 3 ${\tt Idaho\,\,Power\,\,Company}$

- 1 results in the following cost per kilowatt in 2002 dollars:
- Cooling Tower Option: \$686/kW
- 3 Air Cooled Option: \$729/kW
- 4 Q. Please describe how the estimated capital
- 5 cost of the facility described in your previous answer was
- 6 computed.
- 7 A. The capital cost estimate was prepared using
- 8 Thermoflow's PEACE software and adjusting the equipment
- 9 pricing based upon pricing information obtained from recent
- 10 projects. The PEACE software uses the heat balance model
- 11 created in GTPRO as the basis of equipment sizing and then
- 12 applies cost factors for equipment pricing, labor, bulk
- 13 materials, equipment rental, construction supervision,
- 14 engineering, procurement, startup and plant commissioning.
- 15 In addition, "soft costs" were included for interest during
- 16 construction, legal and financing expenses, permitting,
- 17 insurance, bonds, spare parts, administrative expenses and
- 18 contingencies. An allowance was also included for the
- 19 natural gas pipeline interconnect and the electrical
- 20 transmission interconnect.
- 21 Excluded costs included land, land leases
- 22 and taxes as these costs may or may not be applicable.
- Q. How did you determine the performance of the JOHNSON, DI 4 Idaho Power Company

- 1 selected CCCT?
- 2 A. I prepared heat balances for the cycle using
- 3 the Thermoflow software, GTPRO. This software contains the
- 4 latest performance data on a wide range of combustion
- 5 turbines including GE's Frame 7FB. The combustion turbine
- 6 performance is matched with an HRSG and a condensing steam
- 7 turbine to develop the power cycle. Site specific
- 8 meteorological data was obtained for the Boise area and
- 9 this data was used to predict the performance of this plant
- 10 configuration at this location. The annual average
- 11 temperature and humidity for the Boise area is 51F dry bulb
- 12 and 56% relative humidity. The site elevation was assumed
- 13 to be 2,842 ft above sea level.
- Once the annual average heat rate was
- 15 calculated for each option, a degradation factor of 1.75%
- 16 was added to account for unrecoverable losses between
- 17 overhauls. The resulting annual average heat rates with
- 18 degradation applied are as follows:
- 19 Cooling Tower Option: 6,899 Btu/kwhr HHV
- Air Cooled Option: 6,994 Btu/kwhr HHV
- Q. How did you determine the annual O&M costs
- 22 for the facility?
- 23 A. Annual O&M costs were estimated using JOHNSON, DI 5 Idaho Power Company

- 1 historical data from operating plants and by including the
- 2 cost of a long term maintenance contract (LTMC) for the
- 3 CTG. Cost data for the LTMC was obtained from GE. Costs
- 4 were included for the replacement of the SCR catalyst and
- 5 the CO catalyst as well as for consumables such as ammonia,
- 6 cooling tower chemicals and water treatment chemicals. The
- 7 plant was staffed for base load operation and allowance was
- 8 included for spare parts.
- 9 Q. Have you compared the estimated site-
- 10 specific costs of the CCCT presented in Exhibit 102 with
- 11 cost estimates from other, more generic sources?
- 12 A. Yes, Idaho Power advised me that they had
- 13 utilized generic data from the U.S. Department of Energy's
- 14 Annual Energy Outlook (AEO) in making resource cost
- 15 comparisons in their 2002 Integrated Resource Plan and
- 16 asked me to compare the costs presented in Exhibit 102 with
- 17 cost estimates made in the Annual Energy Outlook 2002.
- 18 O. What was the outcome of that comparison?
- 19 A. The AEO 2002 report, Table 38, Cost and
- 20 Performance Characteristics of New Electric Generating
- 21 Technologies, indicates a cost of \$435/kW for a
- 22 conventional gas/oil combined cycle plant in the 250 MW
- 23 size range. The report references several sources

 JOHNSON, DI 6

 Idaho Power Company

- 1 including various sources from industry, government and the
- 2 Department of Energy National Laboratories. The costs
- 3 provided were exclusive of interest charges, but there was
- 4 no specific listing as to the breakdown of the estimate.
- 5 This cost per kW compares closely with the \$436/kW listed
- 6 in the Gas Turbine World (GTW) Handbook 1998-1999. Closer
- 7 review of the GTW figure indicates that the budget cost of
- 8 \$436/kW is for a basic, no frills plant and does not
- 9 include soft costs such as interest during construction,
- 10 legal and financing expenses, permitting expenses,
- 11 insurance, bonds, spare parts, administrative expenses and
- 12 contingency allowance. In addition no allowances were
- 13 included for utility interconnects, buildings, pollution
- 14 control equipment, gas compression or a plant distributed
- 15 control system.
- In order to arrive at an all-in cost per
- 17 kilowatt it is necessary to include all reasonable soft
- 18 costs, typical interconnect costs, site specific costs and
- 19 a contingency, which I did in our estimate.
- The AEO 2002 Report includes a variable O&M
- 21 cost of .52 mills/kWh and a fixed O&M cost of \$15.61/kW.
- 22 The estimated annual O&M cost, assuming 92% availability
- 23 and 250 MW net output is \$4,950,000 per year. Our estimate

 JOHNSON, DI 7

 Idaho Power Company

- 1 for the variable O&M is 3.3 mills/kWh and the fixed O&M is
- 2 \$9.50/kW. The estimated annual O&M cost is \$9,020,000 per
- 3 year.
- 4 It is difficult to determine the cause of
- 5 the differences between the estimates, since the AEO Report
- 6 does not define how the O&M costs are calculated. However,
- 7 it should be noted that we have included a LTSC in our
- 8 estimate, which accounts for half the annual O&M cost and
- 9 we have included the replacement costs of the SCR and CO
- 10 catalysts, which may not have been accounted for in the AEO
- 11 Report.
- 12 Q. In your expert opinion are the cost
- 13 estimates contained in Exhibit 102 reasonable for a CCCT
- 14 sited in the Boise vicinity in 2002?
- 15 A. Yes.
- 16 Q. Does this conclude your direct testimony?
- 17 A. Yes, it does.